We outputted a sine wave from the function generator at 9Hz and came up with the following plots using the following MATLAB code:
x = [
5333
55354
52449
6093
32767
32767
32767
8453
55195
52430
7259
32767
32767
32767
7356
55003
52422
8294
32767
32767
32767
6573
54890
52453
9227
32767
32767
32767
5892
54785
52461
9899
32767
32767
32767
5232
54684
52454
10570
32767
32767
32488
4680
54588
52451
11259
32767
32767
31989
4065
54512
52494
11959
32767
32767
31536
3527
54430
52537
12559
32767
32767
31071
2980
54343
52575
13303
32767
32767
30446
2162
54228
52639
14426
32767
32767
29509
1061
54059
52807
15771
32767
32767
28598
46
53948
53083
17019
32767
32767
27629
64459
53802
53489
18242
32767
32767
26818
63590
53675 ]
t=linspace(0,.00004,100);
f=1./t
figure(1)
plot(t,x)
z=fft(x)
figure(2)
plot(f,z)
***The time interval is certainly incorrect for the values shown in figure 1 (amplitude vs. time)***
*** We expect one large peak for the plot of the FFT of the array x. This is because an FFT transforms a function from time space into frequency space to show amplitude as a function of frequency.
The next goal in the process is to have the SDK code include lines that perform the FFTs directly in the hardware of the Zedboard, eliminating the use for a computer. The results of these can be used/combined for further analysis.
No comments:
Post a Comment